Internal Corrosion Hazard Assessment of Oil & Gas Pipelines Using Bayesian Belief Network Model

Impact Factor: 1.41 · DOI: 10.1016/j.jlp.2016.02.001
Internal corrosion hazard assessment of oil & gas pipelines using Bayesian belief network model

Oleg Shabarchin, Solomon Tesfamariam*

School of Engineering, The University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada

A R T I C L E I N F O

Article history:
Received 26 November 2015
Received in revised form 1 February 2016
Accepted 1 February 2016
Available online 3 February 2016

Keywords:
Oil & gas pipes
Internal corrosion
Bayesian belief network (BBN)
Corrosion depth
Failure pressure

A B S T R A C T

A substantial amount of oil & gas products are transported and distributed via pipelines, which can stretch for thousands of kilometers. In British Columbia (BC), Canada, alone there are over 40,000 km of pipelines currently being operated. Because of the adverse environmental impact, public outrage and significant financial losses, the integrity of the pipelines is essential. More than 37 pipe failures per year occur in BC causing liquid spills and gas releases, damaging both property and environment. BC oil & gas commission (BCOGS) has indicated metal loss due to internal corrosion as one of the primary causes of these failures. Therefore, it is of a paramount importance to timely identify pipelines subjected to severe internal corrosion in order to improve corrosion mitigation and pipeline maintenance strategies, thus minimizing the likelihood of failure. To accomplish this task, this paper presents a Bayesian belief network (BBN)-based probabilistic internal corrosion hazard assessment approach for oil & gas pipelines. A cause-effect BBN model has been developed by considering various information, such as analytical corrosion models, expert knowledge and published literature. Multiple corrosion models and failure pressure models have been incorporated into a single flexible network to estimate corrosion defects and associated probability of failure (PoF). This paper also explores the influence of fluid composition and operating conditions on the corrosion rate and PoF. To demonstrate the application of the BBN model, a case study of the Northeastern BC oil & gas pipeline infrastructure is presented. Based on the pipeline's mechanical characteristics and operating conditions, spatial and probabilistic distributions of corrosion defect and PoF have been obtained and visualized with the aid of the Geographic Information System (GIS). The developed BBN model can identify vulnerable pipeline sections and rank them accordingly to enhance the informed decision-making process.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid growth of the Canadian oil & gas industry requires increases in pipeline infrastructure, resulting in greater operational and management complexity. Because of the potentially adverse environmental impact and significant financial consequences, maintaining the integrity of this infrastructure is essential (Ossai, 2012; Revie, 2015). At the initial stage of production, one of the major threats to the integrity of oil & gas pipelines is internal corrosion (Papavinasam, 2013). The crude mixture extracted from the geological formation, composed of associated water, organic acids, and various dissolved gases such as carbon dioxide (CO2) and hydrogen sulfide (H2S), creates a corrosive environment for steel (Nesić, 2007). Despite the understanding of corrosion mechanisms and improved corrosion detection techniques, the industry reports still show that internal corrosion plays a significant role in pipeline failures. For example, according to an Alberta Energy Regulator report (AER, 2013), from 1990 to 2012, more than 9000 failures occurred due to internal corrosion (Fig.1), which accounts for 54.8% of all spills. The oil & gas companies in the US spend 1.052 billion dollars yearly to mitigate internal corrosion (Papavinasam, 2013). Given this problem, coupled with companies’ limited budgets, there is a need for informed decisions to facilitate an effective corrosion mitigation strategy.

Quantitative and qualitative methods have been proposed to model corrosion of oil & gas pipelines (El-Abbasy et al., 2015; Lahiri and Ghanta, 2008; Marhavilas et al., 2011; Nataraj, 2005; Shahrir et al., 2012; Sinha and Pandey, 2002). Qualitative methods are frequently based on an index system, whereas quantitative...
Internal corrosion mechanisms of mild steel, CO₂ and H₂S corrosion. Expert judgment BBN model has been developed considering two general corrosion computing techniques is reported elsewhere (Kabir et al., 2015). A detailed comparative analysis of commonly applied soft techniques e.g. decision tree models, fuzzy rule-based models and Bayesian belief networks (BBN) can be used to quantify cause—effect relationships and handle uncertainties (Ismail et al., 2011). A detailed comparative analysis of commonly applied soft computing techniques is reported elsewhere (Kabir et al., 2015).

Internal corrosion is a time-dependent random process (Nesić, 2007; Papavinasam, 2013). Any measurement or estimation of the corrosion rate will inevitably contain a degree of uncertainty, as it is influenced by a number of factors subject to aleatory and epistemic uncertainties (Ayello et al., 2012). BBN is particularly suitable to deal with such processes because of its ability to establish a cause—effect network through integration of the various types of available information, such as analytical models, expert knowledge, published literature and historical data into a single flexible framework (Chen and Pollino, 2012; Cockburn and Tesfamariam, 2012). This combination is a beneficial when dealing with processes, that analytical modeling alone fails to describe (e.g. microbiologically influenced corrosion). Furthermore, BBN breaks down a complex problem into its components and then graphically represents them, thus facilitating a better understanding of this problem. In BBN, the associated uncertainties (can be a data uncertainty, model uncertainty or both) are explicitly treated by propagating them throughout the network up to the final node (Uusitalo, 2007).

Fig. 1. Pipeline failures in Alberta from 1990 to 2012 (AER, 2013).

The objective of this paper is to develop a BBN-based internal corrosion hazard assessment approach for oil & gas pipelines. The BBN model has been developed considering two general corrosion mechanisms of mild steel, CO₂ and H₂S corrosion. Expert judgment has been used to create (and then integrate in the framework) knowledge based BBNs for microbiologically influenced corrosion, erosion—corrosion, and pitting corrosion. Fig. 2 depicts the proposed conceptual framework, which integrates analytical and knowledge based corrosion models as well as two failure pressure models to quantify the probability of failure (PoF). Sensitivity analysis has been performed to evaluate the effects of different parameters on internal corrosion hazard. To demonstrate the developed BBN model, a case study for the oil & gas pipeline infrastructure located in the Northeast of British Columbia (BC), Canada is presented. Based on the pipeline characteristics and operating conditions, spatial and probabilistic distributions of corrosion defect as well as PoF have been obtained and visualized with the aid of the Geographic Information System (GIS). The developed model can be employed to identify pipeline sections vulnerable to internal corrosion and rank them to improve the corrosion mitigation program as well as the pipeline maintenance strategy.

2. Bayesian belief network

BBN is an analytical framework that permits the visual representation of causal dependencies among given variables in a probabilistic manner (Pearl, 1988). The BBN approach has been applied in the analysis of various complex engineering problems, such as structural reliability analysis, deterioration modelling, and has proven to be particularly effective in the sphere of risk analysis and decision support under uncertainties (Cheng et al., 1997; Lee et al., 2009; Tesfamariam et al., 2010). A BBN model can be efficiently applied to make informed decisions when the available data is imprecise, ambiguous or incomplete (Kabir et al., 2015).

A BBN is based on a Directed Acyclic Graph (DAG), which consist of many stochastic variables and the directed links between them. The links denote probabilistic conditional dependence, whereas nodes represent parameters of interest (Cockburn and Tesfamariam, 2012). Each unknown parameter is determined, by using Bayes’ theorem, which for the n mutually exclusive hypotheses (j = 1, ..., n) is represented by the relationship:

\[
P(H_j | E) = \frac{P(E | H_j) \cdot p(H_j)}{\sum_{i=1}^{n} p(E | H_i) \cdot p(H_i)} \quad [1]
\]

where P (H_j | E) is the posterior probability for the hypothesis H_j = 1, ..., n, based on the obtained evidence (E); p(H_j) denotes the prior probability; \(p(E | H_i) \) represents conditional probability, assuming that H_i is true, the denominator represents the total probability which is a constant value (Pearl, 1988). Prior or unconditional probability is the likelihood of an event before any evidence is provided. Posterior probability refers to the likelihood after the observation is made. Equation (1) is used in BBN to perform a probabilistic inference for a subset of parameters as new data or evidence is acquired about any other parameters (Janssens et al., 2006).

In a BBN model, variables are related to each other in a manner of family relationships. This relationship is shown in Fig. 3, where variables X1 and X2 are parents and variable Y is a child. A variable X1 is considered to be a parent of Y if the connection link goes from X1 to Y. The variables are defined by a set of mutually exclusive states, whereas their relations are quantified by introducing conditional probabilities for each possible combination of these states. As depicted in Fig. 3, the following steps are to be fulfilled to create a BBN model:

1. Variables that have an effect (X1, X2) on the outcome parameter (Y) are identified.
2. Conditional dependence between the parameters is formulated and represented using arrows. It is essential that variables are linked based only on the cause-effect assumption, not on the correlation.
3. Collectively exhaustive and mutually exclusive states are assigned to parent variables by evaluating prior probability of each state (e.g. P1, P2...P4). The unconditional probability of variables which have no parent nodes can be unknown a priori. In this case, the principle of insufficient reasoning can be applied, assigning for each state 1/n probability, where n is the total number of states of the variable (Tesfamariam and Martín-Pérez, 2008).

The conditional probabilities for each child node are assigned (e.g. P5, P6...P12). This step is the most important, but very time-

![Diagram of Bayesian Network](https://via.placeholder.com/150)
consuming, since all possible state combinations of parent nodes must be provided to fill in the condition probability table (CPT). The CPT may be completed by assigning subjective probability that is used in BBN to reflect the associated uncertainties (Fan and Yu, 2004; Pearl, 1988). The conditional probabilities can be quantified by using information obtained from the field data, expert opinion, analytical model or a combination of them. However, in a complex process with less understood underlying mechanisms, the application of expert knowledge is preferable (Daly et al., 2011; Liu et al., 2012). When multiple analytical models or expert opinions are available, credibility factors (weights) may be assigned to reach the final decision, but the higher the complexity of the problem the greater the uncertainty that emerges (Ismail et al., 2011; Ross, 2009; Sadiq et al., 2008). The fundamental symmetry property of
Bayes' theorem permits the probability to be inferred in forward (predictive analysis) and backward (diagnostic analysis) directions. This characteristic allows a cause-effect network to use reverse logic, thus the BBN model can be exploited as a diagnostic model by introducing new information in the effect variable to infer a probable cause (Ismail et al., 2011; Kabir et al., 2015). In this study, Bayesian network development software Netica has been used to develop the proposed BBN model (Norsys Software Corp, 2015).

3. BBN internal corrosion model development

The proposed BBN model is used to quantify the PoF for gathering and production pipelines (i.e. prior to the purification stage) subjected to aqueous corrosion. This includes pipelines transporting crude oil, oil effluent, produced water, etc. The BBN model has been developed using extensive review of the corrosion literature, industry reports and the current standards of oil & gas pipelines. Forty-four different factors (e.g. operating conditions, corrosion mitigation measures, etc.) affecting the pipeline corrosion rate and PoF are incorporated in the probabilistic network. The developed BBN model for corrosion hazard assessment is shown in Fig. 4. Details of the model for general corrosion, pitting corrosion, erosion–corrosion, and MIC are discussed in the following subsections.

3.1. General corrosion model

Numerous corrosion models have been proposed to estimate the corrosion rate. Multiple factors and their interactions are required to be considered in the analysis. Table 1 shows commonly used factors in different analytical corrosion models. Due to different underlying assumptions and random nature of corrosion, analytical corrosion models may give different results even for the same inputs (Koch et al., 2015). Therefore, there is a significant modeling uncertainty that needs to be accounted for (Ayello et al., 2014). In this study, for the Uninhibited Corrosion Rate (UCR) prediction, a BBN model developed by Ayello et al. (2014) has been adopted. This models was derived considering different model uncertainties. Table 2 reflects the discretization details of corrosive species concentration, pH, Temperature (T), Inhibitor Efficiency (IE), and Wetting Factor (WF), which are used in the BBN general corrosion model to quantify the General Corrosion Rate (GCR).

The Corrosion Inhibitor (CI) node is coupled with the UCR node to account for the inhibitor application, which can significantly mitigate the corrosion rate. As a result, the Inhibited Corrosion Rate (ICR) is computed as (Ayello et al., 2013; Papavinasam, 2013):

\[ICR = \frac{UCR}{C_0^{1/CE}} \]

where, ICR is the inhibited corrosion rate (mm/year), UCR is the uninhibited corrosion rate (mm/year), IE is inhibitor efficiency (%).

The probability of corrosion is minimal when water is not in contact with the steel surface. Thus, Wetting Factor (WF) node is introduced to assess whether the pipe surface is wetted with the water phase or not. The wettability is a complex phenomenon that is affected by many parameters, such as water cut, flow regime, internal diameter, fluid velocity, fluid density, and fluid viscosity.

![Fig. 4. Proposed BBN for internal corrosion assessment.](image-url)
been shown that the protective surface depending on the pH and temperature of the fluid is substantially affected by chloride presence. Chlorides are widely reported as a dominant contributor to the localized corrosion of steel; therefore, many corrosion models apply chloride concentration as an indicator of localized corrosion severity (Papavinasam et al., 2010; Srinivasan and Kane, 1996). In this paper, it is assumed that chlorides cause and intensify pitting corrosion only. Then, the Chlorides (CI) and Pitting corrosion (PC) nodes are introduced, assuming that pitting corrosion is high when a corrosive film covers the pipe’s internal surface with a high chloride concentration.

At a high flow velocity, if suspended solid particles are present in the fluid, they can mechanically damage the steel surface. In addition, in the presence of protective corrosion films, the localized corrosion rate may accelerate because of the synergistic effect between corrosion and erosion (Malka et al., 2007; Shadley et al., 1996; Zhou et al., 1996). Erosion–corrosion manifests itself even more significantly when a pipeline segment has a geometry change (i.e. elbow, tee, etc.) The dominant factors in this process are flow velocity and the presence of solid particles (Malka et al., 2007; Shadley et al., 1996) have identified three velocity intervals affecting erosion–corrosion rates. At the low velocity threshold, the corrosion protective film is intact; therefore the corrosion rate is low. On the other hand, intermediate velocities can cause partial film removal, promoting localized corrosion in these areas. In the case of a high velocity threshold, solid particles damage the protective film uniformly; hence, the corrosion severity becomes high, but it is distributed relatively uniformly (Shadley et al., 1996). This approach is adopted assigning the following velocity values [0 to 1] m/s for the low threshold, [1 to 3] m/s for intermediate and [3 to 4.5] m/s for the high threshold respectively. The Erosion–Corrosion (EC) node, as well as the nodes that cause it, such as Flow Velocity (FV), Passive Film (PF), Suspended Solids (SS) and Geometry Change (GC), are integrated and the discretization details are summarized in Table 3.

3.3. Microbiologically influenced corrosion (MIC) model

The microbiologically influenced corrosion (MIC) model has been developed considering water chemistry, operating conditions and MIC mitigation parameters. Favourable and unfavorable conditions for MIC and its mitigation measures as well as knowledge garnered from the Haile and Sooknah models have been used to populate CPT for the MIC node (Haile et al., 2013; Sooknah et al., 2008). Some of these conditional probabilities for the MIC node are provided in Table 4. The CPT values can be explained as follows: when parent nodes are in the states (Bacteria presence(Yes); Wetting factor(Not wetted); MIC Control(Low); Operating conditions(Not suitable); Water Condition(Not suitable)), then corrosion likelihood is minimal and condition probability of MIC being in the states (MIC(Low); MIC(Medium); MIC(High)) = (0.95; 5; 0) The latter expression means that the probability of MIC being in the Low and Medium states is 95% and 5% respectively.

The MIC contributing factors are clustered into three major categories: Operating Conditions (OC), Water Condition (WC) and MIC Control (MICC). Details of the model development for each category are provided in the subsections below.

3.3.1. Operating conditions

Operating conditions, such as flow rate, temperature, fluid composition and others can significantly affect bacterial activity. It was shown that bacteria could grow under a variety of pressure ranges; even dramatic change of this parameter did not harm a bacterial population (Javahersadhi et al., 2013). Hence, operating pressure is excluded from consideration. The same applies for fluid pH, because biofilms are active over a broad pH range and have an aptitude to buffer pH. Flow velocity significantly influences biofilm formation. For instance, when the flow rate is higher than 2 m/s, biofilms begin to deteriorate (Pots et al., 2002). Conversely, when the flow velocity is very low or stagnant, it forms suitable conditions for the attachment of corrosive biofilms (Papavinasam, 2013). Furthermore, if suspended particles are present in these sections with relatively low flow rates, solid deposition may occur.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Parameters applied in different corrosion models, modified after (Papavinasam, 2013).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion models</td>
<td>Considered parameters</td>
</tr>
<tr>
<td></td>
<td>CO₂ concentration</td>
</tr>
<tr>
<td>(De Waard, Lott and Milliams, 1991)</td>
<td>✓</td>
</tr>
<tr>
<td>(Srinivasan and Kane, 1999)</td>
<td>✓</td>
</tr>
<tr>
<td>(Nesic and Postlethwaite, 1991)</td>
<td>✓</td>
</tr>
<tr>
<td>(Mishra et al., 1997)</td>
<td>✓</td>
</tr>
<tr>
<td>(Dayalan et al., 1998)</td>
<td>✓</td>
</tr>
<tr>
<td>(Anderko et al., 2001)</td>
<td>✓</td>
</tr>
<tr>
<td>(Oddo and Tomson, 1999)</td>
<td>✓</td>
</tr>
<tr>
<td>(Pots et al., 2002)</td>
<td>✓</td>
</tr>
<tr>
<td>(Papavinasam et al., 2010)</td>
<td>✓</td>
</tr>
<tr>
<td>(Adams et al., 1996)</td>
<td>✓</td>
</tr>
<tr>
<td>Proposed BBN</td>
<td>✓</td>
</tr>
</tbody>
</table>

(Tang et al., 2013). However, conservative assumptions can be made by considering water cut and fluid velocity as the only contributors to the wettability (McAllister, 2013). Water Cut (WC) and Flow Velocity (FV) are introduced in the BBN as parent nodes for the MIC node. Then, WF[0.1, 1.0] is used as an adjustment factor to compute GCR as follows:

$$GCR = ICR \times WF \quad [3]$$

where, GCR is the general corrosion rate, and ICR is the inhibited corrosion rate. WF values close to 0.1 correspond to water cut below 0.5% and flow rate higher than 1.5 m/s, whereas when the water cut is above 30%, WF equals unity, regardless of the fluid velocity (Pots et al., 2002; Nyborg, 2002). The discretization details of the nodes, reflecting the aforementioned discussion are described in Table 2.
providing bacteria with a breeding ground (Papavinasam, 2013).

Corrosive biofilms can survive under a broad range of temperatures. However, most species involved in corrosion reactions better thrive within a narrower temperature interval (between 15 °C and 45 °C) (Sooknah et al., 2008). At decreased temperatures, the bacterial activity can be reduced due to the inhibition of the metabolic processes, whereas at high temperatures denaturation may kill the bacterial population. To reflect the aforementioned discussion, Temperature (T), Flow Velocity (FV), Pigging Frequency (PF) and Suspended Solids (SS) nodes were created and incorporated in the Operating conditions (OC) factor. The discretization details of the nodes, constituting this factor are summarized in Table 6.

Table 2
General corrosion model discretization details.

<table>
<thead>
<tr>
<th>Variables and reference for discretization</th>
<th>Sub criteria</th>
<th>Performance measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Corrosion (GCR), mm/year (Ayello et al., 2014; Institute for Energy Technology, 2009)</td>
<td>Inhibited corrosion rate (ICR), mm/year; Wetting factor (WF);</td>
<td>Extremely Low GCR < 0.01</td>
</tr>
<tr>
<td>Corrosive biofilms can survive under a broad range of temperatures. However, most species involved in corrosion reactions better thrive within a narrower temperature interval (between 15 °C and 45 °C) (Sooknah et al., 2008). At decreased temperatures, the bacterial activity can be reduced due to the inhibition of the metabolic processes, whereas at high temperatures denaturation may kill the bacterial population. To reflect the aforementioned discussion, Temperature (T), Flow Velocity (FV), Pigging Frequency (PF) and Suspended Solids (SS) nodes were created and incorporated in the Operating conditions (OC) factor. The discretization details of the nodes, constituting this factor are summarized in Table 6.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.2. Water condition
Recent studies suggest that if free water is not present in a pipeline, then the likelihood of MIC is negligible (Revie, 2015).
MIC affects MIC propagation. To account for that impact, the Sooknah et al., 2007). Thus, water contact with a metal surface has been coupled with the formula (Revie, 2015):

\[
\text{MIC} = \text{MIC}_{\text{w}} \times \text{WF}
\]

MIC_w is the microbial corrosion rate in the presence of water. Besides presence of water, its chemistry also plays an important role in the MIC propagation. The following water parameters affect biofilm growth: Mineral Content (MC), Redox Potential (RP) and Langelier Saturation Index (LSI) (Javaheerdashti et al., 2013). These parameters have been combined in the Water Condition (WC) factor to describe a suitable environment for bacterial populations to thrive.

The MC node indicates the total dissolved solids concentration in water. This can be presented by sulfates, chlorides, bicarbonates, etc. It has been reported that the MIC damage is correlated with the concentration of dissolved minerals (especially chlorides and sulfates) in the transported fluid (Papavinasam, 2013). The LSI parameter indicates if the water has the corrosive or scaling tendency. MIC is more likely to happen when scales are formed, which provide a shelter and a breeding ground for the bacterial populations. MIC occurrence correlates with LSI being in the range close to [-0.5; 0.5] indicates that water is balanced; hence it does not affect the MIC. RP shows the oxidative-reductive nature of the mixture. It can be used to indicate oxygen concentration in the environment, thus differentiate anaerobic and aerobic conditions. Negative values of RP correspond to anaerobic bacteria activity, whereas positive RP reflects aerobic bacteria activity. MIC occurrence correlates with RP; it was reported that corrosive bacteria species are predominantly active when redox potential falls in the range of [-50; +150] mV (Sooknah et al., 2008).

Table 3
Erosion—Corrosion and pitting corrosion models discretization details.

<table>
<thead>
<tr>
<th>Variables and reference for discretization</th>
<th>Sub criteria</th>
<th>Performance measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion—Corrosion (EC), mm/year</td>
<td>Suspended solids (SS);</td>
<td>Low 0 ≤ EC < 0.01</td>
</tr>
<tr>
<td></td>
<td>Flow velocity (FV);</td>
<td>Medium 0.01 ≤ EC < 0.1</td>
</tr>
<tr>
<td></td>
<td>Geometry change (GC);</td>
<td>High 0.1 ≤ EC < 1</td>
</tr>
<tr>
<td>Erosion—Corrosion (EC), mm/year (Haile et al., 2013)</td>
<td>Suspended solids (SS);</td>
<td>Absent No measured parameter is considered</td>
</tr>
<tr>
<td></td>
<td>Flow velocity (FV), m/s;</td>
<td>Low No measured parameter is considered</td>
</tr>
<tr>
<td></td>
<td>Geometry change (GC);</td>
<td>High No measured parameter is considered</td>
</tr>
<tr>
<td></td>
<td>Passive film (PF);</td>
<td>Yes No measured parameter is considered</td>
</tr>
<tr>
<td></td>
<td>Chlorides (CI), ppm</td>
<td>Low 0 ≤ PC < 0.01</td>
</tr>
<tr>
<td></td>
<td>Passive film (PF)</td>
<td>Medium 0.01 ≤ PC < 0.1</td>
</tr>
<tr>
<td></td>
<td>Geometry change (GC)</td>
<td>High 0.1 ≤ PC < 1</td>
</tr>
<tr>
<td>Pitting Corrosion (PC), mm/year</td>
<td>Chlorides (CI), ppm</td>
<td>Negotiable 0 ≤ CI < 500</td>
</tr>
<tr>
<td></td>
<td>Passive film (PF)</td>
<td>Low CI < 30,000</td>
</tr>
<tr>
<td></td>
<td>Geometry change (GC)</td>
<td>High No measured parameter is considered</td>
</tr>
</tbody>
</table>

Table 4
Some examples of CPT for MIC node.

<table>
<thead>
<tr>
<th>Parent nodes: (Bacteria presence; wetting factor; MIC control; operating conditions; water condition)</th>
<th>Child node states (Low; Medium; High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Yes; Not wetted; Medium; Not suitable; Not suitable)</td>
<td>(95; 5; 0)</td>
</tr>
<tr>
<td>(Yes; Not wetted; Medium; Not suitable; Moderately suitable)</td>
<td>(90; 10; 0)</td>
</tr>
<tr>
<td>(Yes; Wetted; Low; Low; Moderately suitable)</td>
<td>(40; 60; 0)</td>
</tr>
<tr>
<td>(Yes; Wetted; Low; Low; Suitable)</td>
<td>(20; 80; 0)</td>
</tr>
<tr>
<td>(Yes; Wetted; Low; Suitable; Moderately suitable)</td>
<td>(15; 85; 0)</td>
</tr>
<tr>
<td>(Yes; Wetted; Low; Suitable; Suitable)</td>
<td>(0; 85; 10)</td>
</tr>
</tbody>
</table>

Table 5
Bacteria removal efficacy depending on the pig type, modified after (Papavinasam, 2013).

<table>
<thead>
<tr>
<th>Pig type</th>
<th>Sphere</th>
<th>Foam Swab</th>
<th>Foam Poly</th>
<th>Cast</th>
<th>Mandrel</th>
<th>Brush</th>
<th>Flow blade</th>
<th>Bidirectional</th>
<th>Pin wheel</th>
<th>Multi-diameter</th>
<th>Bypass</th>
<th>Gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria cleaning efficacy</td>
<td>Poor</td>
<td>Poor</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td>Excellent</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
</tr>
</tbody>
</table>

However, if even a small amount of water wets a pipe interior surface (e.g. due to flow abnormalities or changes in operating conditions), biofilm formation may be initiated (Nyborg, 2002; Sooknah et al., 2007). Thus, water contact with a metal surface affects MIC propagation. To account for that impact, the WF node has been coupled with the MIC node applying the following formula (Revie, 2015):

\[
\text{MIC} = \text{MIC}_{\text{w}} \times \text{WF}
\]

3.3.3. MIC control
MIC can be mitigated by mechanically removing biofilms (brush pigging) from the pipeline’s interior surface or adding in the flow chemical reagents (biocides), which control biofilms growth. An efficient MIC mitigation strategy includes both means. A pig cleaning frequency significantly affects bacterial populations; the
higher the pigging frequency the less time a bacterial would have to proliferate. It has been shown that once every two weeks is the sufficient cleaning frequency to inhibit bacterial growth (Pots et al., 2002; Sooknah et al., 2007). There is an enormous variation of cleaning pig types and each has a specific efficiency with respect to MIC mitigation (King, 2007).

Table 5 shows pig efficiency levels to mitigate MIC depending on the pig type and its configuration.

Biocide treatment can also substantially reduce bacterial activity. However, if the same biocide is applied continuously, bacterial populations can develop a natural resistance to it, thus decreasing chemical treatment effectiveness. Therefore, to remove corrosion biofilms, biocides should be injected in a systematic manner (Pots et al., 2002; Sooknah et al., 2007).

To reflect the aforementioned, a MICC node is introduced in the model. This node is based on the two defined parameters, namely Biocides Treatment (BT) and Mechanical Cleaning (MCL). The latter one is comprised by Pig Efficiency (PE) and Pigging Frequency (PF).
3.4. Corrosion defect model

In this study internal corrosion depth and length are modeled as independent variables (Alamilla et al., 2012; Ayello et al., 2014). Ultimate Corrosion Rate (CR) is obtained as a combined effect of general corrosion, pitting corrosion, erosion-corrosion and MIC (Ayello et al., 2014; Papavinasan et al., 2010). Linear growth model for the future defects is assumed to be valid for corrosion propagation. This can be expressed using the following formula (Caleyo et al., 2002; Opeyemi et al., 2015):

\[
DD(t) = IDD + CR^*t \tag{5}
\]

\[
DL(t) = IDL + CL^*t \tag{6}
\]

where, \(DD(t), DL(t)\) are defect depth and defect length at a given time \(t\); \(CR, CL\) is corrosion rate in the radial and longitudinal directions. \(IDD, IDL\) are initial defect depth and length, which can be known from the latest in-line inspection (ILI). When ILI data is available, \(t\) represents an elapsed time since the latest inspection. Conversely, if no ILI was performed, \(t\) equals to pipe age.

In the case of corrosion length propagation, there is no analytical model to predict its value. However, some conclusions regarding its magnitude can be made based on the history of the predominant corrosion type in the system (Ayello et al., 2013). For instance, the defect length of corrosion-erosion is far greater than that for pitting corrosion. In many studies this parameter was either assumed to be proportional to pipe dimensions or to follow an assumed distribution type (Maes et al., 2008; Teixeira et al., 2008). Therefore, expert judgment is applied to fill the CPT for the defect length node and the discretization details are summarized in Table 6.

A number of failure pressure models have been developed to assess corrosion defects in pipelines e.g. ASME B31G, modified ASME B31G, RSTRENG, Shell-92, DNVRP-F101, and others (American National Standards Institute, 1991; Cosham et al., 2007; Veritas, 2004). These models are built based on the basic mechanics provided in (Kiefner et al., 1973):

\[
\sigma_\theta = \sigma \left[\frac{1 - \left(\frac{A_f}{A_0} \right)}{1 - \left(\frac{A_f}{A_0} \right) \cdot \frac{M}{C_0}} \right] = \sigma \left[\frac{1 - \left(\frac{A_f}{A_0} \right)}{1 - \left(\frac{A_f}{A_0} \right) \cdot \frac{1}{C_0}} \right] \tag{7}
\]

where, \(A_f\) is projected area of defect on axial plane; \(A_0\) is original cross section area; \(M\) is bulging factor; \(\sigma\) is flow stress; \(\sigma_\theta\) is predicted hoop stress at failure.

The enumerated models are primarily concerned with the corroded area geometry and pipe internal pressure. Fig. 5 depicts models output, indicating significant discrepancy for the same input parameters. As is shown, ASME B31G gives the most conservative results, followed by Shell-92 (Caleyo et al., 2002; Opeyemi et al., 2015). On the contrary, Modified B31G and DNVRP-F101 models have been concluded to be the most accurate (Cosham et al., 2007). Consequently, this study considers DNVRP-F101 and modified ASME B31G models together to estimate residual pressure capacity and PoF. The difference in results between these two models is also quite high, accounting for nearly 20% for the low defect depths. Such discrepancy in outputs is attributed to the difference in defect profile approximations and the difference in reference stress interpretation. The necessity of applying these models together in the analysis is governed by the following reasons:

1. Because mechanical behaviour of old and modern pipeline steels are quite different, biased results can be obtained if DNVRP-F101 is applied for old line pipe steels or modified ASME B31G for modern steels (Cosham et al., 2007; Hasan et al., 2012).
2. In practice, oil & gas pipeline infrastructure may contain both old and recently commissioned segments and there is no commonly accepted criterion regarding the applicability of these models under differing conditions.

The Pipeline Defect Assessment Manual (PDAM) summarizes best methods and practices regarding assessment of the different defect types. It also recommends that DNVRP-F101 can only be applicable for moderate to high toughness steel, which is defined as follows: (Cosham et al., 2007; Cosham and Hopkins, 2001):

- Line pipe steel, which satisfies axial strain requirements of the API 5L standard
- Line pipe steel, which shows at least 18 J of impact energy in upper shelf Charpy V-notch test
- Line pipe steel, which is known to have no inclusions, second-phase particles, and other contaminants (it is a typical characteristics of old low grade line pipes such as A and B)

These guidelines were followed and node a Toughness (TO) has been introduced with states low and high, which reflect the aforementioned criteria. For those pipelines, which do not satisfy these criteria ASME B31G model is applied.

The outlined failure pressure models are deterministic, they evaluate a corrosion defect severity applying nominal values for the demand (the pipeline internal pressure loading, \(P_{\text{PoF}}\)) and capacity (the pipeline failure pressure, \(P_f\)) (Caleyo et al., 2002). Such deterministic approach makes them impossible to be employed for quantifying the PoF. Therefore, to estimate PoF, a probabilistic approach must be established. A limit state function (LSF) has been formulated as the difference of the remaining capacity (failure

Table 7

Failure pressure models and their application based on steel toughness.

<table>
<thead>
<tr>
<th>Models</th>
<th>Toughness</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME B31G</td>
<td>Low</td>
</tr>
<tr>
<td>(P_{\text{PoF}} = P(LSF \leq 0), LSF = 2e^{5.6895 \left(1 - \frac{1}{1 + 0.854 \left(\frac{A_f}{A_0} \right) \cdot \frac{M}{C_0}} \right)} - P_{\text{op}}M = \sqrt{1 + 0.6275 \frac{\sigma}{\sigma_\theta} - 0.003375 \frac{\sigma}{\sigma_\theta}^2}) for (\frac{\sigma}{\sigma_\theta} \leq 50; M = 0.032 \frac{\sigma}{\sigma_\theta} + 3.3) for (\frac{\sigma}{\sigma_\theta} > 50)</td>
<td></td>
</tr>
<tr>
<td>DNVRP-F101</td>
<td>High</td>
</tr>
<tr>
<td>(P_{\text{PoF}} = P(LSF \leq 0), LSF = 2e^{5.4 \left(1 - \frac{1}{1 + \frac{1}{(\frac{A_f}{A_0})^4}} \right)} - P_{\text{op}}M = \sqrt{1 + 0.31 \frac{\sigma}{\sigma_\theta}})</td>
<td></td>
</tr>
</tbody>
</table>
pressure, \(P_F \) and demand (operating pressure, \(P_{OP} \)):

\[
\text{LSF} = \frac{P_F}{C_0} \quad \text{[8]}
\]

\[
\text{PoF} = P(\text{LSF} \leq 0) \quad \text{[9]}
\]

To estimate PoF, formulas outlined in Table 7 have been used in BBN. If the defined LSF > 0 (i.e. \(P_F > P_{OP} \)), then the pipeline is considered to be safe to operate. Conversely, if LSF < 0, then there is likelihood for pipeline to fail. The other failure criterion is assumed to be met when defect depth exceeds 80% of the wall thickness. This criterion is widely applied in defect assessment standards, and no operation is allowed when the defect depth exceeds this value.

\[\text{Extremely Low } \]

\[\text{Very Low } \]

\[\text{Low } \]

\[\text{Medium } \]

\[\text{High } \]

\[\text{Very High } \]

\[\text{Extremely High } \]

4. Sensitivity analysis

Sensitivity analysis identifies a degree of influence caused by input parent nodes on the child output nodes. It is essential to perform sensitivity analysis because the final output of BBN depends on probabilities assigned a priori. A sensitivity analysis identifies critical input parameters that significantly impact the...
output results (Tesfamariam and Martín-Pérez, 2008). A sensitivity analysis in BBN can also be applied in order to identify important uncertainties, thus facilitating prioritization of the additional data collection (Ismail et al., 2011). A number of different techniques have been proposed to perform sensitivity analysis, including: entropy reduction, variance reduction and variance of beliefs estimations (Pearl, 1988; Uusitalo, 2007). In this study, the variance reduction method is used to determine the sensitivity of the BBN model’s output (CR and PoF nodes) This method calculates the expected reduction in variance of the expected real value Q given the evidence F as (Norsys Software Corp, 2015; Pearl, 1988; Saltelli et al., 2010):

\[
V(q_f) = \sum p(q_f) |X_q - E(Q_f)|^2
\]

where, f is the state of varying node F, q is the state of the query node Q, p(q_f) is the conditional probability of q when node F is given to be in state f, X_q is the numeric value corresponding to state q, and E(Q_f) is the expected real value of Q due to a finding of the state f in node F. To estimate the degree of influence on the outcome, Netica varies parent nodes (varying nodes), with no prior assumptions made regarding distribution function of the inputs. Based on this degree of influence, nodes in the model are ranked accordingly. Results of sensitivity analysis are illustrated in Figs. 6 and 7.

As is shown in Fig. 6, CO₂ concentration and pH nodes have the greatest contribution in the variance reduction of the CR node, accounting for 24.2% and 17.0% respectively. The high degree of influence of pH can be attributed to the fact that pH is a governing parameter affecting protective films formation. When the pH is low, a pipe surface is unprotected by corrosion films, which causes high general corrosion. Conversely, at high pH levels, a corrosion film protects steel, but has the potential to be locally disrupted, and thus initiating localized corrosion. Because chlorides and suspended solids can be a predominant cause of protective film damage, these nodes have relatively high contribution for the corrosion rate, making up 4.5% and 4.1% of the variance reduction. In addition, the sensitivity analysis indicates high effect of corrosion inhibition measures, namely (14.0%) for the CR node. Parameters that are assumed to govern wettability, such as FV and WC significantly contribute to the variance reduction for the outcome. These nodes affect multiple corrosion mechanisms, which indicate its great importance for the overall corrosion assessment. The input nodes, which represent the suitability of the environment for bacteria activity (MC, RP, BT, and LSI) have a minor effect on the outcome.

Sensitivity analysis of the final output node has indicated that Operating Pressure (OP) and Defect Depth (DD) are crucial parameters affecting PoF. These factors are followed by the CR and Outside Diameter (OD) nodes accounting for 11.7% and 7.2% of the variance reduction. Additionally, it may be observed from Fig. 7 that the node Toughness (TO) moderately contributes to the variance reduction and is therefore, significant to the proposed model.

5. Discussion and scenario analysis

In complex probabilistic models, inputs frequently contain a various degree of uncertainty. To deal with this uncertainty, inputs can be described as random variables with defined probability distributions (Sadig et al., 2004). These distributions are either subjectively defined (when data is limited or unavailable) or obtained from statistical fitting of the available data. Consequently, the output given by such probabilistic models is also a random variable with predicted distribution and associated uncertainties. In this work, two types of uncertainties are considered. It includes modelling and data uncertainties. The modelling uncertainty arises from simplified assumptions made for a complex natural process. The data uncertainty can either result from natural heterogeneity (variability) or lack of knowledge. The latter one can be reduced by obtaining more data. However, variability is the inherent property of the parameter and cannot be reduced (Oberkampf et al., 2004).

To propagate these uncertainties to the output parameters, Monte Carlo simulation is used. Monte Carlo simulation is a widely applied alternative to analytical methods to determine parameters.
of the output distribution based on the randomly generated values from known input distributions (Sadiq et al., 2004). To demonstrate the application of the proposed BBN model, a random vector of operation and pipeline parameters has been generated from subjectively defined distributions. Some of the model parameters have been considered as deterministic values, including pipe age, outside diameter, and wall thickness. Then, all model parameters are applied in Monte Carlo simulation for 4000 iterations. Parameters used as well as characteristics of the applied probability distributions are summarized in Table 9.

The first scenario reflects recently constructed small diameter pipeline operating under high pressure in sweet environment, carrying fluid with up to 10% mole fraction of CO₂. Scenarios 2 and 3 show pipes operating under moderate and low pressure, conveying oil effluent with 0.75% and 1% H₂S, respectively, (sour conditions). Corrosion inhibitions as well as regular pigging are used as major means to combat internal corrosion in the given pipelines. The simulation output reflecting current internal corrosion situation is presented in Fig. 8. The 50th and 90th percentile values represent central tendency estimate (CTE) and reasonable maximum estimate (RME) Table 10.

Fig. 8 shows that output results for the scenario 1 has a substantial scatter, which can be explained by significant uncertainties in the input data. More data should be gathered to reduce this epistemic uncertainty in order to clarify if the pipeline has very low or moderate PoF. In scenario 2, median defect reaches 0.59 of wall thickness, but due to moderate operating pressure median PoF is 0.26. Scenario 3 has the highest predicted median defect depth, which can be explained by the high corrosivity of the transported fluid and long elapsed time (15 years). Despite the reduced operating pressure, this pipeline has the highest median value of PoF, thus it needs to be inspected first to eliminate uncertainties and reach the decision regarding appropriate maintenance strategy.

Since in scenario 1 pipeline showed corrosion problem shortly after it has been commissioned, it is essential to know corrosion defect and PoF evolution over its lifetime. In order to prevent leak or rupture at the later stage of pipeline operation, it is a common practice in the oil & gas industry to reduce the operating pressure as the pipeline ages. In this paper, it is assumed that the pipeline operator decreases the mean value of the operating pressure linearly up to 50% of its initial value at the end of the service life (20 years). It can be expressed as follows:

\[
P(t) = \left(1 - \frac{t}{40}\right)P_{in}
\]

where \(P(t)\) is the mean value of the operating pressure at time \(t\) (MPa); \(P_{in}\) — is the mean value of the initial operating pressure.

Fig. 9 demonstrates a substantial growth of the corrosion defect within 4 years with the following stabilization. The 25th and 75th percentile interval shows the uncertainty range in the simulated data.

Fig. 10 depicts the predicted evolution of the PoF as a function of time in service. As is shown, PoF significantly increases within 6 years of the pipeline operation. This is due to a rapid growth of the defect depth and length within this time, which leads to a reduction in pressure resistance capacity. In addition, it is observed that despite the gradual decrease in operating pressure, median PoF grows till 18 years, reaching the value of 0.248. Subsequently, scheduled decline in operating pressure contributes more to PoF than corrosion defect growth, which results in the overall drop of the PoF. As mentioned before it is essential for the PoF prediction to have information regarding toughness of the pipeline steel, which governs the selection of the appropriate failure pressure model. To

Table 9

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF Mean Stdev</td>
<td>PDF Mean Stdev</td>
<td>PDF Mean Stdev</td>
<td>PDF Mean Stdev</td>
</tr>
<tr>
<td>1 pH level (LN)</td>
<td>6.5 0.65</td>
<td>5.8 0.58</td>
<td>5.3 0.53</td>
</tr>
<tr>
<td>2 Temperature (°C) N 37 5</td>
<td>N 42 7</td>
<td>N 29 9</td>
<td></td>
</tr>
<tr>
<td>3 CO₂ pressure (Bar) U [0 ... 7]</td>
<td>LN 1.191 0.596</td>
<td>LN 0.621 0.311</td>
<td>LN 10 0.000</td>
</tr>
<tr>
<td>4 H₂S (ppm) fixed 0</td>
<td>LN 7500 3750</td>
<td>LN 10000 3750</td>
<td></td>
</tr>
<tr>
<td>5 O₂ (ppm) Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>6 Fe²⁺ (ppm) Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>7 Flow Velocity (m/s) N 1.18 0.2</td>
<td>N 2.18 0.218</td>
<td>N 2.5 0.25</td>
<td></td>
</tr>
<tr>
<td>8 Water cut (%) LN 18 12.6</td>
<td>U [50 ... 100]</td>
<td>U [10 ... 60]</td>
<td></td>
</tr>
<tr>
<td>9 Geometry change Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>10 Suspended solids Concentration No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>11 Bacteria presence No</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>12 Chlorides (ppm) Low</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>13 Mineral content (ppm) Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>14 Langelier saturation index Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>15 Redox potential (mV) N 50 20</td>
<td>N 50 20</td>
<td>N 50 20</td>
<td></td>
</tr>
<tr>
<td>16 Biocides treatment No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>17 Cleaning frequency U [12 ... 48]</td>
<td>U [4 ... 48]</td>
<td>U [4 ... 48]</td>
<td></td>
</tr>
<tr>
<td>18 Cleaning efficiency Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>19 Inhibitor efficiency (%) Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>20 Pipe age fixed 2</td>
<td>fixed 9</td>
<td>fixed 15</td>
<td></td>
</tr>
<tr>
<td>21 Wall thickness (mm) fixed 3.2</td>
<td>fixed 4.8</td>
<td>fixed 3.2</td>
<td></td>
</tr>
<tr>
<td>22 Outside diameter (mm) fixed 88.9</td>
<td>fixed 168.3</td>
<td>fixed 88.9</td>
<td></td>
</tr>
<tr>
<td>23 Toughness (Low/High) High</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>24 SMYS (MPa) LN 395 27.65</td>
<td>LN 395 27.65</td>
<td>LN 395 27.65</td>
<td></td>
</tr>
<tr>
<td>25 OP (MPa) LN 6.96 0.699</td>
<td>LN 3.97 0.397</td>
<td>LN 2.07 0.207</td>
<td></td>
</tr>
</tbody>
</table>

N — normal distribution; LN — Lognormal distribution; U — uniform distribution.
demonstrate this, the same analysis has been implemented, while considering low steel toughness. Fig. 10 shows that the difference in PoF is quite significant, accounting for 73.2% at its maximum (t = 6 years). As was expected, uncertainty in failure probability prediction and corrosion defect depth increases with elapsed time.

6. Case study of northeastern BC pipeline infrastructure

In this paper, to illustrate the application of the proposed BBN model, internal corrosion hazard has been assessed for oil & gas pipeline network, located in Northeast of British Columbia (BC), Canada. The region under study is the most essential gas production area in BC, and accounts for more than half of the provincial gas production (BCOGS, 2014). As of 2014, 75% of the product was being extracted from unconventional sources, with production levels reaching 2.3 billion cubic feet/day accompanied by substantial generation of condensate and gas liquids. To transport the extracted fluid, over 3000 km of pipeline infrastructure has been constructed. Since the gas production boomed in the mid-2000s the majority of the pipelines are in the early stage of their life cycle (less than 10 years). Fig. 11 summarizes important data on the studied region. Around 65% of the infrastructure is operated in sour environment with H2S concentration ranging from 0.01% to 32% mole fraction.

To perform the analysis, spatial, mechanical and fluid composition data has been obtained from publicly available sources (BCOGS, 2015a; BCOGS, 2015b). Although, several parameters were unknown, the most important ones for the model (based on the sensitivity analysis), namely operating pressure, outside diameter, pipe age, wall thickness were available for each segment, making the analysis feasible.

The output of the proposed BBN model is reported as maximum defect depth in the pipeline segment and its PoF due to this defect. For simplicity and representation purposes, the output is grouped in low, medium and high categories, which corresponds to [0–25%], [25%–50%], [50%–75%] of the wall thickness loss for defect depth parameter and [0–10%], [10%–40%], [40%–100%] for the probability of failure. Though, a decision maker can tune these thresholds, according to experience or pipeline condition and location.

Fig. 12 shows the BBN model predictions for various diameters of Northeastern BC oil & gas pipeline infrastructure. This figure indicates that the majority of the pipe segments with small diameter (88.9 mm and 114.3 mm) may contain corrosion defects with medium or high depth. Consequently, pipelines of this type have 71% and 6% of segments being in medium and high risk of failure states. Primarily, it can be explained by the high corrosivity of the...
transported fluid as well as thin walls of small diameter pipes. To eliminate failure, operators and regulatory authorities should pay a special attention to these pipelines, establishing appropriate monitoring and preventive measures (e.g. gradual pressure reduction, corrosion inhibition, etc.) Segments with high diameter (168.3 mm and higher) have been predicted to be relatively safe to operate, without being in the high state of PoF. However, to minimize failure, timely inline inspections or repair actions are...
recommended for some segments of pipelines (with diameter of 168.3 mm, 219.1 mm, and 273.1 mm), because they most likely contain corrosion defects with the high relative depth.

Finally, to facilitate failure mitigation programs and to improve resources allocation strategies for Northeastern BC infrastructure, spatial distribution of the predicted parameters have been created with the aid of publically available GIS software QGIS (QGIS, 2015) Fig 13.

7. Conclusions

The main objective of this research was to develop a flexible approach that incorporates analytical models (based on the physical properties of the system), published literature and expert judgments in order to assess internal corrosion in oil & gas pipelines. This incorporation is particularly useful for the purpose of corrosion assessment because corrosion modeling results that are predicted by different models are often inconsistent with each other and with the actual field data. A thorough literature review has been performed to identify forty-four different factors and their interdependencies, affecting corrosion depth and associated PoF. A quantitative probabilistic approach using BBN has been performed to predict the output parameters. The necessity of using this approach was dictated by the high degree of uncertainty in the input data as well as by the uncertain nature of the corrosion process. MC simulations have been applied to the BBN model, which is comprised of various corrosion models and failure pressure models. Scenario analysis has been conducted to illustrate the proposed model performance. In addition, the BBN model has been used to estimate corrosion propagation and PoF evolution over a pipeline’s service time. Furthermore, it has been shown that the proposed BBN model is able to distinguish between low and high toughness of the pipe steel, which is rarely considered in reliability analyses but, as was demonstrated, can drastically affect the outcome. Internal corrosion severity as well as the probability of failure has been estimated for the Northeast BC pipeline infrastructure. Results indicated that small diameter pipelines are the most vulnerable and prone to failure. The flexibility of the proposed BBN approach allows the model to be extended in order to include more corrosion contributing factors as well as new information. Furthermore, the proposed model is able to perform a diagnostic analysis, which can indicate causes of internal corrosion.

The sensitivity analysis indicated that inputs such as the operating pressure, corrosion defect depth, and corrosion rate predominantly influence the model output. It is essential to accurately estimate these parameters in order to correctly predict PoF. Corrosion rate has been shown to be strongly dependent on fluid pH, water cut, CO₂, and H₂S concentrations as well as corrosion inhibitor efficiency. This indicated the importance of developing and applying proper analytical models, which lay the foundation for the proposed BBN model. Results obtained from this study can be employed to identify pipeline sections vulnerable to internal corrosion. These results may then be utilized to improve the corrosion mitigation program, as well as pipeline maintenance Fig. 13. Spatial distribution of the predicted median defect depth (a); median probability of failure (b).
strategies. In addition, the model can be used to predict the safe operating pressure at a given time in the future (t). Thus, the field operating pressure can be adjusted accordingly to guarantee pipeline integrity over its full service time.

Acknowledgment

The first author acknowledges the financial support through MITACS and BCOGS under British Columbia Natural Gas Strategic Research project. The authors acknowledge Dr. Francois Ayello for providing the uninhibited corrosion rate BBN model.

References

